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Background

• Significant recent interest in supersonic overland flight

• Key aerodynamic challenges:
        - low boom for supersonic flight over land
        - low drag for reduced fuel-burn and emissions

• Accurate CFD analysis and design methods are needed to help address these
challenges

        - drag prediction capability fairly well established
        - sonic boom prediction less mature, especially with unstructured grids

• Current practice for boom prediction:
        - use CFD to compute signature in mid-field (~3-10 body lengths)
        - extrapolate signature to ground using propagation code

• Key requirements for accurate CFD mid-field signature
        - sufficient grid density to resolve shock
        - aligning the field grid with shocks & expansions
        - stretching field grid along Mach lines to reduce dissipation
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Some Current CFD Gridding Approaches
for Sonic Boom Prediction

• Structured grid:
        + good control of mid-field grid alignment & spacing (A&S)
         - multiple blocks needed in near-field for complex

configurations

• Unstructured grid:
        + simpler grid generation for complex configurations
         - weak control over mid-field grid A&S, can lead to excessive
           dissipation in flow solution

• Hybrid (unstructured near-field, structured mid-field):
         + easy near-field grid generation & good mid-field grid A&S
          - requires multiple grids and flow solvers + interpolation

• Unstructured grid with run-time adaptation:
         + easy near-field grid generation & good mid-field grid A&S
          - requires multiple runs of analysis and refinement codes
            (and adjoint solver), grids can get large if refinement is used
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Methods
• TetrUSS unstructured grid software system used

• Geometry Setup - GRIDTOOL
        - develop surface patching from IGES or other geometry definition
        - define outer boundary patches

• Grid Sourcing - AUTOSRC
        - automatically locates and set sizes for sources that control surface
           and field grid spacing

• Grid Generation - VGRID
        - generates body-fitted tetrahedral mesh using advancing layers and
           advancing front methods
        - new volume source capability used to control field grid spacing
           below configuration (see AIAA-2008-7178)

• Grid Modification - SSGRID
        - shears and stretches grid for improved sonic boom prediction

• Flow Solver - USM3D
        - cell-centered RANS flow solver, Roe flux-difference scheme
        - all cases run in inviscid mode
        - limiters available for solution stability
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Geometry Setup - GRIDTOOL

• Develop water-tight surface patches from IGES 
   definition of geometry, including sting
 

• Add compact outer boundary box

BL

BL
BL

2*BL

3*BL
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Grid Sourcing - AUTOSRC

Volume source for 
dense field grid

All line sources controlling surface grid 
automatically located and sized
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Grid Modification - SSGRID

Axial shearing based on Mach angle

• Radial stretching based on distance
  between inner cylinder and outer
  boundary

• Stretching increased as r0.25 for
  smooth cell size transition away
  from inner cylinder

sin-1 (1/M)

Inner cylinder

Keel line

• Grid alignment approximated by a priori axial shearing of grid
based on free-stream Mach number and configuration angle of
attack

• Grid stretching reduces grid size and signature dissipation to
reach mid-field

• Inner cylinder region with no grid modifications prevents
sheared & stretched grid from intersecting configuration

• Variable inner cylinder radius based on keel line allows grid
modification to begin close to body

• Grids for different Mach number/angle-of-attack combinations
can be quickly (~ 1 minute) developed from baseline grid

Outer boundary
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Grid Modification - SSGRID

Baseline

Sheared & Stretched

Inner cylinder



11

National Aeronautics and Space Administration

www.nasa.gov

Configurations for Validation

6.48º Cone-Cylinder (NASA TM X-2219)

Parabolic Body of Revolution
(NASA TN D-3106, Model 4)

69º Swept Delta-Wing-Body 
(NASA TN D-7160)

Ames Low Boom Wing Tail with Nacelles
 (NASA CP-1999-209699, LBWT)Quartic Body of Revolution

(NASA TN D-3106, Model 5)
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Results of Flow Solver Limiter Study

6.48º Cone-cylinder, fine grid
M∞= 1.68     α = 0.0°    h/L = 10

Delta wing-fuselage, coarse grid
M∞= 1.68     α = 4.74°    h/L = 3.6

Use limiter only if needed for solution stability
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SSGRID Results For 6.48° Cone-cylinder

Case         # Cells(M)          Timing (minutes)
                                        Grid      Run      Total
Coarse           2.0                6          8           14
Medium          3.6              10        14           24
Fine                9.7              23        40           63

M∞= 1.68     α = 0.0°    h/L = 10
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SSGRID Results For Parabolic Body (Model 4)

Case         # Cells(M)          Timing (minutes)
                                        Grid      Run      Total
Coarse           1.9                5        10           15
Medium          3.5                9        19           28
Fine                9.8              24        54           78

M∞= 1.41     α = 0.0°    h/L = 10
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SSGRID Results For Quartic Body (Model 5)

Case         # Cells(M)          Timing (minutes)
                                        Grid      Run      Total
Coarse           1.8                5        10           15
Medium          3.4                9        18           27
Fine                9.5              24        53           77

M∞= 1.41     α = 0.0°    h/L = 10
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SSGRID Results For 69° Swept Delta-wing-body

Case         # Cells(M)          Timing (minutes)
                                        Grid      Run      Total
Coarse           2.7                9        18           27
Medium          4.3              13        32           45
Fine              10.5              29        98         127

M∞= 1.68     α = 4.74°    h/L = 3.6
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SSGRID Results For LBWT

Case         # Cells(M)          Timing (minutes)
                                        Grid      Run      Total
Coarse           4.2              15        32           47
Medium          7.1              24        54           78
Fine              15.9              50      127         177

M∞= 2.0     α = 2.0°    h/L = 1.167
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Final Comparison of CFD and Wind Tunnel Results

Delta Wing-body

Quartic BodyParabolic BodyCone-cylinder

LBWT
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• Mid-field boom signatures obtained using the fine grid
option in AUTOSRC correlate well with wind tunnel data

• Grid size studies indicate that coarser grids can give up
to 5x reduction in case time with little loss of accuracy

• SSGRID can quickly (~1 minute) modify a baseline grid
for analysis at other Mach numbers or angles of attack

• SSGRID provides an efficient method for developing
unstructured grids for accurate prediction of sonic boom
signature at mid-field distances

Concluding Remarks


